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Abstract: Objective: To analyse the MRI imaging characteristics, morphological features, and association with low back pain 
in different types of Modic changes (MC) of the lumbar spine. Features in different types of Modic changes (MC) in the lumbar 
spine and their association with low back pain. Methods: A retrospective analysis was conducted on the clinical data of 124 
patients who underwent lumbar MRI examinations and were diagnosed with Modic changes between March 2024 and February 
2025 at a certain hospital. Prospective collection of imaging and clinical data was conducted on 30 patients with different types 
of lumbar Modic changes and low back pain scores during the same period. Pyradiomics was used to extract MRI morphological 
and radiomics features in Modic changes, followed by Kruskal-Wallis test, Dunn’s test, Mann-Whitney U test, correlation 
analysis, LASSO regression screening, and validation of differential features. A classification model was constructed using the 
support vector machine (SVM) algorithm, and heatmap analysis was performed to investigate the correlation between MRI 
morphological and radiomics features and low back pain scores. Results: Among 154 patients without low back pain, 34 were 
Modic Type I, 62 were Type II, and 58 patients with Modic Type III. A total of 7 morphological features and 19 radiomics 
features showed significant differences in mean values among the three Modic groups (P < 0.05). A Modic classification model 
based on the differential features was constructed using SVM, with an accuracy rate of 98%. In the correlation analysis, ODI 
scores were positively correlated with the long-to-short axis ratio and surface area-to-volume ratio of morphological features, 
and negatively correlated with sphericity and flatness (P < 0.05). Additionally, it was positively correlated with the radiomics 
feature FS_lbp_3D_m1_glszm_ZoneEntropy (r = 0.380, p < 0.05) and negatively correlated with T1_lbp_3D_m2_glszm_
SmallAreaLowGrayLevelEmphasis (r = -0.423, p < 0.05) and FS_wavelet_LLH_firstorder_90thPercentile (r = -0.376, p < 
0.05). Conclusion: Morphological and radiomics features differ among different subtypes of Modic changes (MC). An automatic 
classification model constructed based on these differential features demonstrates high accuracy, and key features are significantly 
associated with the low back pain functional disability index.
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1. Introduction
Modic changes (MC) in the lumbar spine are characteristic signal abnormalities of the vertebral endplates 
and adjacent bone marrow on MRI, and are independent risk factors for severe and disabling low back pain. 
Although studies have shown that Type I MC is significantly associated with nonspecific chronic low back pain, 
the exact pathological mechanisms and specific associations with pain severity remain unclear. Current studies 
primarily focus on the presence, classification, and area of MCs, lacking precise quantitative analysis of lesion 
morphological characteristics, which limits a deeper understanding of the pathological progression of MCs and 
their pain-inducing mechanisms [1]. In recent years, the emergence of radiomics has provided a powerful tool for 
in-depth analysis of medical images. It can high-throughput extract and quantify features such as texture, shape, 
and intensity distribution that are difficult to identify with the naked eye, thereby revealing potential pathological 
information. However, there are no studies investigating the morphological differences of lumbar MC using 
radiomics and exploring the association between these quantitative features and clinical symptoms of low back 
pain. Given this, the present study aimed to utilise radiomics methods based on conventional MRI sequences of the 
lumbar spine (T1WI, T2WI, FS), to precisely extract and quantitatively analyse morphological features of lesion 
regions in different types of MC (Type I vs. Type II). By analysing the relationship between cases where HIZ and 
Modic changes coexist on MRI and the occurrence of provoked consistent pain, and evaluating the specificity 
and sensitivity of combining these two features as a diagnostic marker, this study aims to establish a reliable 
and practical diagnostic method for DLBP [2]. Additionally, by analysing the pathological changes in different 
regions of degenerative intervertebral discs represented by the HIZ zone and Modic signs, and combining these 
findings to study their relationship with DLBP, this study aims to deepen the understanding of the morphological 
characteristics of MC and its association with low back pain from an imaging quantitative perspective, thereby 
providing new imaging evidence for exploring the pathological mechanisms and potential therapeutic targets of 
MC-related low back pain.

2. Materials and methods
2.1. General data
A retrospective analysis was conducted on MRI data from 124 patients with lumbar Modic changes diagnosed 
between March 2024 and February 2025 at our hospital. Concurrently, 30 patients with lumbar Modic changes 
of different types and low back pain scores were prospectively enrolled, and their imaging and clinical data were 
collected. Imaging features were analysed to investigate their association with low back pain scores.

Inclusion criteria: (1) Confirmed Modic changes (Types I–III) by lumbar MRI; (2) Age 18–70 years old, no 
gender restrictions; (3) Complete T1WI, T2WI, and FS sequence imaging data.

Exclusion criteria: (1) Concurrent vertebral fractures, tumours, infections, or prior lumbar spine surgery; (2) 
Severe spinal stenosis (sagittal diameter ≤ 10 mm) or nerve root compression causing lower extremity radicular 
pain; (3) Incomplete key clinical data (e.g., classification records, pain scores) or damaged imaging data; (4) 
Patients with concomitant rheumatic immune diseases, metabolic bone diseases, congenital lumbar abnormalities, 
or scoliosis.

2.2. Methods
2.2.1. Modic change classification diagnosis 
Assess the type of Modic changes in patients according to the diagnostic criteria for Modic changes in the lumbar 
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spine, excluding degenerative or infectious secondary changes: Type I: Low signal intensity on T1-weighted 
images (T1WI) of the endplates and adjacent bone, and high signal intensity on T2-weighted images (T2WI); 
Type II: High signal intensity on T1WI, and equal/slightly higher signal intensity on T2WI; Type III: Low signal 
intensity on both T1WI and T2WI.

2.2.2. Grading of lumbar disc degeneration and pain scoring 
The degree of degeneration of Modic changes was assessed using the Pfirrmann criteria on T2WI sagittal images 
of lumbar MRI. Grade I-II was considered normal, and grades III-V corresponded to mild, moderate, and severe 
degeneration, respectively. The Oswestry Disability Index (ODI) and Visual Analogue Scale (VAS) were used to 
evaluate low back pain in 30 prospectively enrolled patients. The ODI assesses 10 dimensions of pain intensity, 
activities of daily living, lifting, walking, sitting, standing, sleep disturbance, sexual activity, social activity, and 
travel, with each item scored 0–5; VAS assessed pain intensity using a 10-cm scale (0 cm no pain, 10 cm severe 
pain), with continuous variables supporting parametric tests.

2.2.3. MRI normalisation and ROI segmentation 
To eliminate the influence of different scanning devices, all MRI data were subjected to signal intensity 
normalization. Subsequently, using ITK-SNAP software, regions of interest (ROIs) were delineated on T1-
weighted images (T1WI), T2-weighted images (T2WI), and fat-suppressed (FS) sequences for Modic lesions. 
Given that Modic changes often involve adjacent vertebrae, the ROI was defined within a single spinal functional 
unit containing the visible lesion and annotated on consecutive cross-sectional images across all relevant 
sequences. Cases with preliminary ROI delineation were reviewed by another senior physician with over ten years 
of clinical experience.

2.2.4. Imageomics feature extraction 
Using the Python (v3.9.13) platform, the PyRadiomics toolkit is used to extract radiomics features from ITK-
SNAP-annotated ROIs. A total of 107 quantitative parameters are calculated from each raw image, including first-
order statistics, morphological features, and texture metrics based on the grey-co-occurrence matrix, grey-distance 
matrix, grey-size matrix, grey-dependence matrix, and adjacent grey-difference matrix. To enhance the information 
content of the features, filtering techniques were applied prior to feature extraction to strengthen the structural and 
textural pattern recognition of the ROI regions.

2.3. Statistical analysis 
(1) Statistical distribution of morphological features in different types of Modic changes
All features extracted from the original and filtered images were standardised based on the distribution of imaging 
features (morphology, intensity, texture, etc.) with significant differences across various Modic changes. A Mann-
Whitney U test (p < 0.05) was then used for preliminary screening. Subsequently, correlation analysis was 
performed on the screened features, and redundant features with high correlation (r > 0.9) were removed. We then 
applied the LASSO algorithm to calculate the coefficients of the remaining features, retaining those with non-zero 
coefficients as key differential features. Based on these features, we constructed machine learning classification 
models and further analysed their descriptive statistical differences (mean/variance) across different Modic types 
and their correlations with clinical baseline data.
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(2) Statistical analysis of the distribution of imaging features among different Modic types 
First, standardise the features extracted from the original and filtered images, and perform a Mann-Whitney 

U test (p < 0.05) to screen the features. Then, perform a correlation analysis on the screened features, remove 
redundant features with high correlation (r > 0.9), and apply the LASSO algorithm to calculate the coefficients of 
the remaining features, retaining the features with non-zero coefficients as the key difference feature set. Finally, 
a machine learning classification model is constructed based on this feature set to comprehensively evaluate the 
descriptive statistical differences (mean/variance) between different Modic types and their correlation with clinical 
baseline data.

3. Results
3.1. Baseline data 
This study included 154 participants, including 124 without low back pain scores (88 males, 36 females), aged 18–
70 years old, with an average age of 58.36 ± 5.10 years old. Among them, 34 were Modic Type I, 62 were Type II, 
and 28 were Type III; Among the 30 participants with low back pain scores prospectively collected, there were 7 
males and 23 females, aged 19–71 years, with a mean age of 56.80 ± 6.62 years old. Among these, 7 were Modic 
Type I, 22 were Type II, and 1 was Type III. Due to the single case of Type III in the prospective cohort, its mean 
characteristics were not included in subsequent statistical analyses.

3.2. Morphological characteristics distribution of different modic types 
Fifteen shape features were extracted from the ROI of T2WI images using PyRadiomics (Table 1). This table 
shows the mean (standard deviation) distribution of features in each Modic type, with means (SD) marked with “*” 
indicating that the feature followed a normal distribution in the corresponding type (P < 0.05). Kruskal-Wallis (KW) 
non-parametric tests were used to analyse intergroup differences, identifying seven morphological features with 
statistically significant differences (P < 0.05): elongation (P = 0.000074), flatness (P = 0.014935), major axis length 
(MajorAxisLength, P = 0.030619), major axis length to minor axis length ratio (MajorAxisLength/LeastAxisLength, 
P = 0.014935), axial maximum two-dimensional diameter (Maximum 2D Diameter Slice, P = 0.022303), sphericity 
(Sphericity, P = 0.000012), and surface area-to-volume ratio (Surface Volume Ratio, P = 0.000010).

Table 1. Distribution of Modic change morphological characteristics and KW test results for different subtypes

Feature
Mean (SD) Difference Test 

(Kw test)Type I Type II Type III

Elongation 0.816 (0.112)* 0.736 (0.124) 0.779 (0.111) 0.000074*

Flatness 0.629 (0.137) 0.575 (0.120) 0.609 (0.119) 0.014935*

Short axis ratio 25.259 (5.955) 24.620 (5.348) 24.956 (6.093) 0.774269

Major axis length 40.380(6.273) 43.425(8.399) 41.246 (7.495) 0.030619*

Long axis ratio 1.677 (0.416)* 1.835 (0.522)* 1.708 (0.348) 0.014935*

Maximum two-dimensional diameter (column 
direction) 44.065 (7.279) 46.258 (8.276)* 47.270 (8.102) 0.101193

Maximum two-dimensional diameter (row direction) 41.004 (8.084) 42.466(9.395)* 41.448 (9.250) 0.265319

Maximum two-dimensional diameter (axial) 40.312 (5.108) 39.012 (5.265)* 41.577 (5.597)* 0.022303*
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Table 1 (Continued)

Feature
Mean (SD) Difference Test 

(Kw test)Type I Type II Type III

Maximum three-dimensional diameter 47.887 (7.108) 49.467 (7.981) 50.200 (8.074) 0.247682

Grid volume 12,226.669 
(6,490.95)

10521.627 
(5558.275)*

14,321.675 
(9,160.341) 0.052316

Short axis length 32.596 (4.924) 31.306 (4.976) 31.774 (5.746) 0.333330

Spherical degree 0.438 (0.039) 0.405 (0.053)* 0.424 (0.045) 0.000012*

Surface area 5744.109 
(2251.073)

5684.179 
(2152.712)*

6473.510(2559.349) 0.348311

Surface area to volume ratio 0.520(0.116)* 0.592(0.124) 0.515 (0.116) 0.000010*

Voxel volume 12,416.356 
(6,515.319)

10705.479 
(5581.332)*

14,521.310 
(9,205.617) 0.054961

To identify the specific intergroup differences among the seven morphometric features that showed overall 
significance in the Kruskal-Wallis test, Dunn’s post hoc test was used for pairwise comparisons (Table 2). The 
analysis revealed that elongation rate, flatness, sphericity, surface area-to-volume ratio, and long-to-short axis ratio all 
exhibited statistically significant differences between Modic I and Modic II types. The surface area-to-volume ratio 
showed significant differences not only between Modic I and II types but also between Modic II and III types (P < 
0.05). The long axis length and axial maximum two-dimensional diameter did not reach statistical significance (P > 
0.05), but their P-values were close to the critical level. The Kruskal-Wallis test, as a non-parametric method, may 
be limited in effectiveness when sample sizes are small or the population distribution deviates from the assumption, 
and it is prone to outliers, leading to false positives. In contrast, Dunn’s Test exhibits greater robustness, particularly 
for comparisons between small sample groups. The reason for this may be that the two features (long axis length and 
maximum two-dimensional diameter) exhibited marginal significance in the overall test (KW P < 0.05). 

Table 2. Results of Dunn’s Test for morphological features with significant differences

Features with significant differences Dunn’s Test results

Elongation rate P-value 1 2 3

Elongation

1 1.000000 0.000079 0.431213

2 0.000079* 1.00000 0.180102

3 0.431213 0.180102 1.000000

Flatness P-value 1 2 3

Flatness

1 1.000000 0.018587 1.0000

2 0.018587* 1.00000 0.46437

3 1.000000 0.46437 1.00000

Long axis length

P-value 1 2 3

1 1.000000 0.051191 1.000000

2 0.051191 1.00000 0.375196

3 1.000000 0.375196 1.000000
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Table 2 (Continued)
Features with significant differences Dunn’s Test results

Maximum two-dimensional diameter 
(axial) P-value 1 2 3

1 1.000000 0.178804 1.000000

2 0.178804 1.000000 0.062015

3 1.000000 0.062015 1.000000

Sphericity

P-value 1 2 3

1 1.000000 0.000022 0.601980

2 0.000022* 1.0000 0.057642

3 0.601980 0.057642 1.00000

Surface area to volume ratio

P-value 1 2 3

1 1.000000 0.000154 1.000000

2 0.000154* 0.003347

3 1.0000 0.003347* 1.000000

Long-to-short axis ratio

P-value 1 2 3

1 1.000000 0.018587 1.0000

2 0.018587* 1.0000 0.46437

3 1.000000 0.46437 1.0000

3.2. Imagingomics differences in Modic changes of different types 
Radiomics features were extracted from T1WI, T2WI, and FS sequences using PyRadiomics. Compared 
with a single sequence, the combination of T1WI+T2WI+FS significantly improved the accuracy of Modic 
classification. The feature extraction process includes raw images and seven types of transformation processing: 
wavelet, Gaussian-Laplace filtering (LoG), pixel square (Square), square root of intensity (SquareRoot), 
logarithmic transformation (Logarithm), exponential transformation (Exponential), local binary pattern 
(LocalBinaryPattern2D/3D), and gradient features (Gradient). Each sequence extracts 1,906 features. To screen for 
Modic classification-specific features, the following screening criteria are applied:

(1) Mean-centred and variance-scaled the original data (mean = 0, variance = 1);
(2) The standardised features were analysed using the Mann-Whitney U test to screen out 1,336 features with 

significant intergroup differences (P < 0.05). Their distribution relative to the threshold line (P = 0.05) 
is shown in the scatter plot in Figure 1. The points in Figure 1 represent the features extracted from 
different image types, and the red horizontal line indicates the critical condition of P = 0.05.

(3) Highly correlated features (r > 0.9) were removed, prioritising variables with the highest average absolute 
correlation, resulting in 823 features retained;

(4) The LASSO algorithm (optimal alpha = 0.044984) was used to calculate feature coefficients (Figure 2) 
and screen non-zero coefficient features.
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Figure 1. Mann-Whitney U test results.

Figure 2. LASSO regression coefficient distribution plot.

Based on the 29 non-zero coefficient features selected by LASSO (threshold > 1 × 10-6), a Modic 
classification model was constructed using support vector machines (SVM). The model validation set achieved 
an accuracy rate of 98%, confirming that the selected features have significant discriminative efficacy for Modic 
classification. Further analysis using Kruskal-Wallis test and Dunn’s test validated the differences between feature 
groups. The results showed that 15 features in the T1WI sequence exhibited significant intergroup differences (P 
< 0.05); 8 features in the T2WI sequence exhibited significant intergroup differences (P < 0.05); and 6 features in 
the FS sequence exhibited significant intergroup differences (P < 0.05). All 29 features reached a significant level 
in the Kruskal-Wallis test.
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3.3. Correlation between radiomics features and low back pain 
In this section, we used R language to analyse the correlation between the low back pain scores of the 30 patients 
prospectively collected and the aforementioned morphological and radiomic features. During the correlation 
analysis, since only 1 case in the prospectively collected cases belonged to Modic Type III, we only analysed data 
from Modic Type I and Modic Type II cases.

3.3.1. Correlation between morphological characteristics and low back pain 
The study found that the Oswestry Disability Index (ODI) score was significantly correlated with specific lumbar 
morphological features. ODI was significantly positively correlated with the muscle fibre long-short axis ratio 
(r = 0.391, p < 0.05) and the surface area-to-volume ratio (r = 0.506, p < 0.01). Conversely, ODI scores were 
significantly negatively correlated with sphericity (r = -0.499, p < 0.01) and flatness (r = -0.390, p < 0.05). This 
indicates that elongated muscle fibre morphology, increased surface complexity, and deviation from spherical and 
flat states are associated with increased severity of low back pain.

3.3.2. Correlation between imaging group differences and low back pain 
Research has found that the Oswestry Disability Index (ODI) score is significantly associated with specific 
radiological imaging features. ODI is positively correlated with the regional entropy of three-dimensional 
images from FS sequences (FS_lbp_3D_m1_glszm_ZoneEntropy, r = 0.380, p < 0.05); while it was 
negatively correlated with the low-greyscale small-area distribution in T1 sequences (T1_lbp_3D_m2_glszm_
SmallAreaLowGrayLevelEmphasis, r = -0.423, p < 0.05) and the LLH wavelet 90th percentile (FS_wavelet_
LLH_firstorder_90Percentile, r = -0.376, p < 0.05). Additionally, age is negatively correlated with the pixel grey 
level variability of the T2 sequence (T2_logarithm_firstorder_RobustMeanAbsoluteDeviation, r = -0.390, p < 0.05); 
while it was positively correlated with the uniformity of grey-level spatial distribution in the T1 sequence (T1_
exponential_glszm_SizeZoneNonUniformityNormalized, r = 0.492, p < 0.01) and low grey-level large dependence 
(T1_lbp_3D_m1_gldm_LargeDependenceLowGrayLevelEmphasis, r = 0.395, p < 0.05).

4. Discussion 
Modic changes are an independent risk factor for severe disabling low back pain [3]. This study investigated the 
morphological and radiomic features of lumbar MCs and their association with low back pain through quantitative 
analysis. The baseline characteristics of the study population were consistent with the incidence patterns of MCs 
and previous studies [4]. This study systematically revealed the imaging feature differences among MC subtypes 
for the first time: MC Type I exhibits higher elongation rate, flatness, and sphericity in morphology, suggesting 
a more spherical shape and flatter surface, which may be associated with its more active inflammatory state [5]; 
whereas MC Type II exhibits a larger major axis length, major-to-minor axis ratio, and surface area-to-volume 
ratio, with a morphology tending toward elongated or irregular shapes. The larger surface area-to-volume ratio 
may be associated with tissue swelling and deformation caused by inflammation [6], and this feature shows a 
significant positive correlation with the Oswestry Disability Index (ODI) (r = 0.506, p < 0.01); Additionally, ODI 
was positively correlated with the long-to-short axis ratio (r = 0.391, p < 0.05) and negatively correlated with 
sphericity (r = -0.499, p < 0.01) and flatness (r = -0.390, p < 0.05), indicating that elongated lesion morphology, 
surface complexity, and deviation from spherical and flat states are significantly associated with worsening low 
back pain severity.



80 Volume 3; Issue 4 

Imageomics analysis further revealed that ODI was positively correlated with FS sequence regional entropy 
(FS_lbp_3D_m1_glszm_ZoneEntropy, r = 0.380, p < 0.05), while negatively correlated with the distribution of 
low-grayscale small regions in the T1 sequence (T1_lbp_3D_m2_glszm_SmallAreaLowGrayLevelEmphasis, r = 
-0.423, p < 0.05) and the FS sequence LLH wavelet 90th percentile (FS_wavelet-LLH_firstorder_90thPercentile, 
r = -0.376, p < 0.05). Reduced smoothness and increased regional entropy may be associated with oedema signals 
in the lesion, thereby influencing pain [7,8]. Additionally, age was significantly correlated with specific radiomic 
features: negatively correlated with pixel grey-scale variability in the T2 sequence (T2_logarithm_firstorder_
RobustMeanAbsoluteDeviation, r = -0.390, p < 0.05); with the uniformity of grey-level spatial distribution in the 
T1 sequence (T1_exponential_glszm_SizeZoneNonUniformityNormalized, r = 0.492, p < 0.01) and the low grey-
level large dependence (T1_lbp_3D_m1_gldm_LargeDependenceLowGrayLevelEmphasis, r = 0.395, p < 0.05), 
indicating that the texture and grey-level characteristics of lesion tissues change with age, supporting the role 
of age in the onset of MC [9]. A diagnostic model constructed using 29 significantly different radiomics features 
selected from T1 (15), T2 (8), and FS (6) sequences effectively distinguished MC subtypes, highlighting the 
diagnostic value of the T1WI sequence [10]. The innovation of this study lies in the first application of radiomics 
technology to quantitatively analyse MC characteristics and construct an automatic classification model, providing 
new insights into the pathogenesis of MC and the differentiation of MC-related low back pain.

5. Conclusion
The study demonstrates that morphological and radiomics features effectively differentiate between subtypes of 
Modic changes (MC). An automated classification model leveraging these discriminative features achieves high 
accuracy, with key features showing significant correlations with the low back pain functional disability index. 
These findings highlight the potential of radiomics-based approaches in improving MC subtype characterization 
and their clinical relevance in assessing functional disability. Further validation in larger cohorts could enhance the 
model’s utility in personalized diagnosis and management.
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