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Abstract: This study examines the application of Problem-Based Learning (PBL) in Advanced Mathematics education 
to enhance student engagement and conceptual understanding. By integrating real-world problems and collaborative 
inquiry, the PBL model shifts the focus from passive learning to active knowledge construction. The research highlights 
the model’s effectiveness in fostering critical thinking, problem-solving skills, and interdisciplinary connections. 
Findings suggest that PBL not only improves learning outcomes but also transforms students into proactive learners. The 
study proposes future directions, including the development of PBL case databases and blended learning approaches, to 
further optimize mathematics instruction.
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1. Introduction
Advanced Mathematics is a core course for STEM majors, yet traditional teaching methods often lead to low 
student engagement, disconnection from real-world applications, and over-reliance on exam-based assessments. 
Problem-Based Learning (PBL), originally developed in medical education, offers a promising solution by 
using authentic problems to drive collaborative inquiry and knowledge construction [1]. This study investigates 
PBL’s adaptation to Advanced Mathematics, addressing key challenges: (1) aligning abstract mathematical 
concepts with real-world contexts, and (2) designing scaffolded problems for diverse learners. The research 
aims to validate PBL’s effectiveness in enhancing conceptual understanding, problem-solving skills, and 
interdisciplinary application. By integrating constructivist and pragmatic theories, the proposed model seeks 
to transform passive learning into active exploration, offering practical strategies for educators and improving 
learning outcomes for students.
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2. Theoretical foundations of the PBL model
2.1. Learning theory foundations
2.1.1. Constructivism
Core Tenets:

Piaget emphasized that knowledge is actively constructed through individual-environment interactions.
Vygotsky highlighted the role of social interaction in cognitive development [2].
Implications for Mathematics:
The abstract nature of mathematical knowledge requires authentic problem contexts (e.g., “applying graph 

theory to logistics route optimization”) to facilitate meaningful construction.

2.1.2. Pragmatic education theory
Core Tenets:

“Education as the reconstruction of experience”, with a focus on “learning by doing” [3].
PBL Application:
Embeds mathematical tools (e.g., differential equations) into real-world problems (e.g., epidemic 

prediction), avoiding decontextualized symbolic instruction.

2.2. Instructional implementation theories
2.2.1. Situated cognition
Core Tenets:

Learning occurs through participation in communities of practice [4].
PBL Design Example:
Role-playing tasks (e.g., “engineer-mathematician collaboration” for bridge load calculations) reinforce 

awareness of mathematics’ professional utility.

2.2.2. Cognitive load theory (Sweller)
Core Tenets:

Problem decomposition reduces intrinsic cognitive load; scaffolding (e.g., providing initial conditions for 
differential equation modeling) supports learning [5].

3. PBL teaching model design for advanced mathematics
3.1. Design philosophy and principles
Based on constructivist theory and the characteristics of mathematics, the PBL model follows a design 
philosophy of “One Core, Dual Integration, Three-Dimensional Objectives.”

One Core:
Driven by authentic problems, the model completes a closed-loop process of “problem scenario → 

mathematical modeling → solution verification → extended application” to achieve knowledge construction.
Dual Integration:
The PBL pedagogy is deeply integrated with the disciplinary features of advanced mathematics (abstraction, 

logical rigor, and applicability).
Three-Dimensional Objectives:
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Knowledge acquisition (conceptual understanding/computational skills), cognitive development 
(abstraction/reasoning/modeling), competency cultivation (innovation/collaboration).

Design principles include:
1. Authentic Problem Principle:
Select real-world cases from engineering, economics, and physics (e.g., “COVID-19 transmission 

prediction” for differential equations).
2. Cognitive Scaffolding Principle:
Problem design follows the mathematical cognitive progression: intuitive perception → formal definition 

→ symbolic computation → practical application.
3. Scaffolding Support Principle:
Provide visual aids for abstract concepts (e.g., using GeoGebra to illustrate the geometric meaning).
Formative Assessment Principle:
Establish a multi-dimensional evaluation system incorporating process documentation, peer evaluation, 

and defense performance.

3.2. Overall framework design
The model adopts a “Dual-Cycle Four-Phase” operational structure (as shown in Figure 1):

Figure 1. “Dual-cycle four-phase” operational structure

Typical teaching unit time allocation (in units of 4 class hours):
Introduction of problem scenarios (0.5 class hours) - Extracurricular independent exploration (6–8 hours) 

- Classroom collaborative discussion (2 class hours) - Achievement display and evaluation (1 class hour) - 
Reflection and expansion extension (0.5 class hours)

3.3. Key element design
3.3.1. Problem design matrix
Establish a two-dimensional design framework of “knowledge dimension  difficulty level.” Typical Case 
Example (Using Surface Integrals):

Problem Context: The reentry capsule of a spacecraft requires a special thermal protection coating, where 
the coating thickness is correlated with surface curvature. Given the parametric equation of the reentry capsule’s 
surface: z=x²+y²(-1≤x,y≤1).

Requirements:
(1) Calculate the Gaussian curvature of each point on the surface;
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(2) Assuming that the coating cost per unit area is C=2+|K| (K is curvature), find the minimum total cost;
(3) The process treatment scheme of curvature mutation is discussed.
This problem integrates multiple knowledge domains, including curvature computation, surface 

integration, and optimization theory, while requiring MATLAB programming implementation and engineering 
decision-making.

3.3.2. Learning support system
Construct a trinity support system:

1. Digital Resource Kit
Core Resources: Micro-lecture videos (deconstructing key/difficult concepts);
Extended Resources: 3Blue1Brown animations, MIT OpenCourseWare links;
Tool Resources: MATLAB code templates, Symbolab calculation guides.
2. Interactive Learning Platform
Online forum with sections, Jupyter Notebook-based interactive math labs.
3. Expert Consultation Network
Cross-disciplinary mentor pool (physics, economics, etc.), “Friday Q&A Sessions” for collective problem-

solving.

3.3.3. Teacher facilitation strategies
Adopting a “Gradual Scaffolding” approach:

1. Initial Phase: Metacognitive Prompting
Guiding questions:
“Which previously learned concepts does this problem connect to?” “What information sources will you 

explore?”
2. Intermediate Phase: Cognitive Intervention
For struggling groups:
• Provide hints instead of solutions (e.g., “Consider revisiting Green’s Theorem”)
• Guide error correction through Socratic questioning:
“Does this solution maintain physical unit consistency?” “What would happen if the boundary conditions 

changed?”
3. Final Phase: Deep Reflection
Structured protocols:
• Reflection journals with prompts:
“What was the most counterintuitive discovery?” “How would you approach this differently next time?”

3.4. Implementation process design
3.4.1. Preparation phase

1. Diagnostic Assessment: conduct pre-test questionnaires to evaluate students’ prior knowledge foundations;
2. Group Formation Strategy: adopt “Heterogeneous Homogeneous Grouping” with each team comprising: 

1 student with strong mathematical foundations; 2 students with intermediate proficiency; 1 student with 
outstanding practical skills;
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3. Learning Contract Establishment: formalize team learning agreements specifying mandatory weekly 
discussion sessions (minimum 1 session/week).

3.4.2. Implementation phase
A 6-Step Cyclic Process Demonstrated via “Gradient Descent Optimization Problem”:

1. Problem Representation: present optimization task:
minf(x,y)=x²+y²+2sin(x+y).
Guiding Students to Translate Engineering Optimization Problems into Mathematical Formulations
2. Solution Design: Each group shall submit the research plan, including the proposed algorithm (steepest 

descent/Newton method), convergence analysis ideas, and programming implementation path.
3. Exploratory Implementation: Inquiry implementation: the teacher demonstrates the basic version of 

MATLAB in class, and the group improves the algorithm after class (such as adding adaptive step size)
4. Midterm Defense: Each group will report the current progress, focusing on the mathematical difficulties 

encountered (such as the irreversibility of the Hessian matrix) and the tried solutions;
5. Solution Refinement: directional adjustments based on feedback, supplemental learning (convex 

optimization theory)
6. Final Demonstration: submit a complete technical report, and conduct the algorithm performance 

comparison experiment.

3.4.3. Evaluation phase
The “five-dimensional radar chart” assessment system is shown in Figure 2.

Mastery

Performance

InnovationWriting

Communication

Group 1 Group 2

Figure 2. The “five-dimensional radar chart” assessment system: Mastery (Test results), Performance (Completeness of learning 
log), Innovation (Uniqueness of solution), Writing (Team members’ mutual evaluation), Communication (Q&A quality)

4. Empirical research
4.1. Participants
This study employed a quasi-experimental design with two parallel classes enrolled in “Advanced Mathematics” 
during the first semester of 2024–2025.
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Experimental group (PBL, n=48): Implemented the PBL teaching model;
Control group (traditional, n=45): Maintained lecture-based instruction.
Baseline equivalence (pre-test):
Gender ratio: PBL: 25 male/23 female, Control: 24 male/21 female;
College entrance math scores: PBL: M=125.3, SD=8.7, Control: M=123.9, SD=9.2
t=0.782, P=0.436 (no significant difference).

4.2. Instruments
Two data collection tools were used: Achievement tests (pre/post):

1. Academic achievement test: prepare pre-test and post-test papers, covering core knowledge points such 
as limit, derivative, and integral, with Cronbach’s α coefficient of 0.82 and 0.85, respectively.

2. PBL teaching effect questionnaire: it contains three dimensions: learning interest (5 questions), 
autonomous learning ability (6 questions), and team cooperation (4 questions). It is scored on a Likert 5-point 
scale, and the total table α=0.89.

4.3. Implementation procedure
The 16-week intervention followed this protocol:

1. Pre-test Phase (Week 1): At the beginning of the term, the two groups of students were tested for the 
level of advanced mathematics.

2. Instructional Delivery (Weeks 2–15):
PBL: Conducted biweekly PBL seminars featuring six authentic problem scenarios (e.g., “Modeling and 

Analysis of COVID-19 Transmission”). The instructional process followed: Problem presentation → Group 
discussion → Independent inquiry → Solution demonstration → Reflective evaluation.

Control: Received traditional lecture-based instruction supplemented with problem-solving sessions.
3. Data Collection (Week 16): Researchers administered a post-test at the end of the semester and 

distributed questionnaires (yielding 46 valid responses from the PBL group and 43 from the Control group).

4.4. Data analysis results
4.4.1. Result comparison
As shown in Table 1, the ANCOVA (controlling for pretest scores) indicated that the posttest scores of the 
experimental group were significantly higher than those of the control group (F=9.327, p=0.003, η²=0.112). The 
experimental group exhibited an even more pronounced advantage in word problem-solving scores (t=3.892, 
P<0.001).

Table 1. Comparison of student performance between groups (Mean ± SD)

Group Pre-test scores Post-test scores Increased scores

PBL 72.5±9.1 83.7±7.8 11.2±5.9

Control 71.8±8.7 78.3±8.4 6.5±6.3

4.4.2. Questionnaire results
Analysis of the questionnaire data (Table 2) revealed that students in the experimental group showed significant 
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improvement across all dimensions (P < 0.01), with effect sizes (Cohen’s d) ranging from 0.67 to 0.92, 
indicating moderate to large effects. The greatest improvement was observed in the “Mathematics Application 
Confidence” dimension (mean difference = 1.12).

Table 2. Pre-post comparison of PBL teaching effectiveness across questionnaire dimensions

Dimension (s) Pre-test mean Post-test mean Mean difference t Cohen’s d

Interest 3.15±0.72 4.02±0.68 0.87 6.892 0.83

Self-Regulated Learning 3.28±0.81 4.05±0.73 0.77 5.673 0.71

Teamwork 3.41±0.69 4.23±0.65 0.82 7.112 0.92

5. Conclusion
This study confirms the efficacy of Problem-Based Learning (PBL) in advanced mathematics education. The 
PBL model successfully addresses key teaching challenges by engaging students with authentic, interdisciplinary 
problems and collaborative learning processes. Results demonstrate significant improvements in students’ 
conceptual understanding, problem-solving skills, and ability to apply mathematical knowledge in practical 
contexts. The framework’s emphasis on scaffolded problem design and process-oriented assessment offers a 
viable alternative to traditional lecture-based instruction. These findings establish PBL as a valuable pedagogical 
approach for transforming advanced mathematics into a more dynamic and application-focused discipline.
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