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Abstract: Miniature air quality sensors are widely used in urban grid-based monitoring due to their flexibility in 
deployment and low cost. However, the raw data collected by these devices often suffer from low accuracy caused by 
environmental interference and sensor drift, highlighting the need for effective calibration methods to improve data 
reliability. This study proposes a data correction method based on Bayesian Optimization Support Vector Regression (BO-
SVR), which combines the nonlinear modeling capability of Support Vector Regression (SVR) with the efficient global 
hyperparameter search of Bayesian Optimization. By introducing cross-validation loss as the optimization objective 
and using Gaussian process modeling with an Expected Improvement acquisition strategy, the approach automatically 
determines optimal hyperparameters for accurate pollutant concentration prediction. Experiments on real-world micro-
sensor datasets demonstrate that BO-SVR outperforms traditional SVR, grid search SVR, and random forest (RF) models 
across multiple pollutants, including PM2.5, PM10, CO, NO2, SO2, and O3. The proposed method achieves lower prediction 
residuals, higher fitting accuracy, and better generalization, offering an efficient and practical solution for enhancing the 
quality of micro-sensor air monitoring data.
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1. Introduction
With the accelerated development of global urbanization and industrialization, air pollution has evolved into a 
severe global environmental challenge, seriously restricting the sustainable development of cities and posing an 
increasingly serious threat to human health. In order to achieve high-density, real-time, and refined monitoring 
of urban air quality, in recent years, micro air quality detectors have attracted extensive attention and application 
from researchers and environmental protection agencies around the world due to their significantly low cost, 
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flexible deployment characteristics, and potential for high spatial resolution monitoring [1]. This type of innovative 
equipment can not only efficiently monitor fine particulate matter (PM2.5), inhalable particulate matter (PM10), and 
six typical air pollutants such as carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2) and ozone 
(O3) in the environment, but also simultaneously collect multimodal meteorological data such as temperature, 
humidity, wind speed, air pressure, precipitation, etc. These rich data dimensions provide unprecedented support 
for the construction of an urban air quality perception network with a wide coverage and finer granularity, making 
up for the limitation of insufficient spatial coverage of traditional fixed monitoring stations.

Despite the significant advantages of micro detectors, they still face many technical and application challenges 
in actual operation. Compared with the professional-grade instruments used in national or regional high-precision 
reference monitoring stations, micro-detectors have significant gaps in basic sensor performance, long-term 
operational stability, cross-sensitivity, and adaptability to complex environments. The original monitoring data are 
generally affected by multiple complex factors such as the inherent accuracy limitations of sensors, drastic changes in 
ambient temperature and humidity, cross-reactions between different pollutants, and sensor aging and drift, resulting 
in widespread systematic deviations and high uncertainty in the data. This data quality problem makes it difficult for 
the original output of micro air quality detectors to directly meet the rigor of scientific research, the decision-making 
support needs of policy making, and the accuracy requirements of public services. Therefore, how to effectively 
and robustly correct the monitoring data of micro devices and keep them highly consistent with the reference-level 
monitoring results has become a key bottleneck problem to give full play to the application value of micro air quality 
detectors and incorporate them into the mainstream air quality management system.

In view of this, in recent years, academia and industry have invested a lot of energy in trying to introduce a 
variety of data-driven methods to correct the output of micro detectors. The commonly used correction methods 
in current research mainly include linear models based on statistical regression (such as linear regression and 
polynomial regression) and nonlinear models based on machine learning (such as random forest (RF), gradient 
boosting tree (GBDT), and deep neural network (DNN)) [2]. The above methods have improved the bias and 
uncertainty of micro air quality detector data to a certain extent, but they still have their own limitations. For 
example, linear models are difficult to capture complex nonlinear relationships; some nonlinear models such as 
random forests may face the challenge of dimensionality disaster when processing high-dimensional data; and 
although neural network models have strong fitting ability, they usually require a large amount of data for training, 
and the model has poor interpretability. At the same time, they have high requirements for computing resources 
and may not be suitable for edge deployment scenarios of micro sensors. In addition, the performance of these 
models is highly dependent on the reasonable selection of hyperparameters. Traditional parameter adjustment 
methods, such as manual experience adjustment or grid search (GS), are inefficient and time-consuming in high-
dimensional parameter space, and are very easy to fall into local optimal solutions. It is difficult to fully explore 
the potential of the model, and it is difficult to adapt to the complex and changeable data characteristics and 
environmental conditions in practical applications [3,4]. In order to overcome the above challenges and further 
improve the performance and practicality of the air quality data correction model, this paper innovatively proposes 
a correction method for support vector machine (BO-SVM) based on Bayesian optimization [5]. The core idea 
of this method is to use the powerful global optimization ability of the Bayesian optimization (BO) framework. 
Bayesian optimization globally models the complex hyperparameter space of SVM by constructing surrogate 
models such as Gaussian process (GP), and adaptively selects the next evaluation point in combination with the 
acquisition function, so that the optimal hyperparameter combination of the SVM model can be found efficiently 
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and intelligently under a limited number of evaluations. This mechanism can significantly improve the correction 
accuracy and generalization ability of the SVR (support vector regression, as a specific application of SVM in 
regression tasks) model, making it more robust when processing micro-monitoring data. This paper will conduct 
a comprehensive and rigorous experimental verification of the proposed BO-SVM method by pairing it with 
actual micro-air quality detection data (including PM2.5, PM10, CO, NO2, SO2, and O3 and related meteorological 
parameters) and high-precision reference station data. The experimental results will show from multi-dimensional 
evaluation indicators (such as RMSE, MAE, R²) that the BO-SVM model is superior to the traditional SVR and 
other common data-driven regression models in multiple key indicators. It has strong practical value and broad 
promotion potential, and provides a new technical path for improving the quality of micro air quality sensor data.

2. Methods
This study proposes a Bayesian Optimization-Support Vector Regression (BO-SVR) model to perform high-
precision correction on the raw data collected by micro air quality monitors. This method cleverly combines the 
inherent advantages of support vector machines (SVM) in modeling small samples, high dimensions, and nonlinear 
data, and the ability of Bayesian optimization (BO) to perform efficient global search in complex hyperparameter 
spaces [6]. Through this integrated strategy, we hope to build a robust and accurate correction model to cope with 
common challenges in environmental monitoring data, such as noise, multi-source interference, sensor drift, and 
calibration bias, thereby significantly improving the reliability and accuracy of micro monitoring data.

2.1. Problem definition
The correction of air quality monitoring data is essentially a regression problem. We define the multidimensional 
feature vector collected by the micro monitor at a specific time t as . This feature vector comprehensively 
covers a variety of environmental parameters, including but not limited to:

Particle concentration: fine particulate matter (PM2.5), inhalable particulate matter (PM10).
Gaseous pollutant concentrations: carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), 

ozone (O3), etc.
Meteorological variables: ambient temperature, relative humidity, atmospheric pressure, wind speed, wind 

direction, precipitation intensity, etc. These meteorological factors have a significant impact on the response 
characteristics of the sensor and the diffusion of pollutants, and are key auxiliary information for building an 
accurate calibration model.

At the same time, it is assumed that there is a high-precision reference monitoring station that provides a 
true and reliable air quality measurement value  at the same time t. This reference value usually comes from 
a national or regional standard monitoring station, and its data quality has been strictly calibrated and quality 
controlled.

The calibration goal of this study is to learn and construct a nonlinear mapping function , so 
that the function can accurately map the original reading x_t of the micro-monitor to the true value y_t of the 
corresponding reference monitoring station. Mathematically, this goal can be expressed as:

Where εt represents the residual term, which includes noise, random errors, and unmodeled system deviations 
that are not captured by the model. Our core task is to find an optimal function f, so that the norm of the residual 
term εt is as small as possible, so that the constructed regression model f(xt) can be as close to the reference data 
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y as possible, and finally achieve high-precision and automatic correction of the monitoring value of the micro-
device. This process not only improves the individual accuracy of the micro-sensor but also provides data quality 
assurance for the large-scale, low-cost deployment of the air quality monitoring network.

2.2. Support Vector Regression Model (SVR)
Support Vector Regression (SVR) is an extended application of Support Vector Machine (SVM) in regression 

tasks. It adheres to the core idea of SVM - Structural Risk Minimization (SRM). Different from the traditional 
empirical risk minimization (ERM), SRM aims to minimize the training error while ensuring the complexity of 
the model, thereby improving the generalization ability of the model and effectively avoiding overfitting. This is 
particularly important for environmental monitoring data with limited samples, high-dimensional features, and 
nonlinear relationships.

The goal of SVR is to learn a nonlinear regression function that can best fit the training data. Specifically, the 
function maps the original input data x to a higher-dimensional feature space φ(x), thereby finding an optimal linear 
regression hyperplane in the high-dimensional space [7]. The mathematical expression of this regression function is:

Where  is a nonlinear mapping function that maps the data point x in the original input space to the 
high-dimensional feature space. w is the weight vector in the high-dimensional space, which defines the normal 
direction of the regression hyperplane; b is the bias term, which determines the position of the hyperplane in the 
feature space.

The uniqueness of SVR lies in the introduction of the -insensitive loss function. During the training process, 
errors falling within the ε range (that is, the absolute value of the difference between the predicted value and the 
true value is less than or equal to ε) are not penalized. This gives SVR robustness to noise, because it allows the 
model to “tolerate” data fluctuations within a certain error range, focusing on capturing the main trends of the data 
rather than being sensitive to every tiny error, which is crucial for the task of correcting air quality data containing 
measurement noise [8–10].

In order to find the optimal regression function f(x), SVR is trained by minimizing the following objective function:

This objective function consists of two parts:

(1) : Regularization term, used to minimize the norm of the weight vector “w,” thereby maximizing 
the interval of the regression hyperplane, thereby controlling the complexity of the model, and enhancing the 
generalization ability of the model.

(2) : Empirical risk term, where ξi and ξ*i are slack variables, representing the excess error of 
data point i on the upper and lower sides of the ξ-pipeline, respectively. C>0 is a penalty factor used to balance the 
trade-off between model complexity and training error.

When the C value is large, the model will more strictly penalize the error beyond the ε-pipeline, making the 
model more inclined to fit the training data, but may increase the risk of overfitting.

When the C value is small, the model has a higher tolerance for errors, which may lead to a simpler model, 
but the training error may increase, and there is a risk of underfitting.

The above objective function is subject to the following constraints:
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The constraints ensure that most data points can fall within the “insensitive area” formed by f(x)+ε, or are 
allowed to exceed this area by introducing slack variables ξi and ξ*i, but the excess amount is penalized.

In order to avoid the huge amount of computation caused by directly calculating  in high-dimensional 
feature space, SVR uses duality theory and kernel tricks. By introducing Lagrange multipliers, SVR can eventually 
be transformed into a decision function in the form of the following kernel function:

Among them, αi and α*i are Lagrange multipliers. Only those data points located on or outside the boundary 
of the ε-insensitive region (i.e., support vectors) have non-zero αi–α*i values. The support vectors determine the 
final regression hyperplane.  is a kernel function that calculates the inner product in the 
feature space without explicitly calculating .

In practical applications, the choice of kernel function is crucial to the performance of SVR. This paper 
selects Gaussian Radial Basis Function (RBF) as the kernel function, and its expression is:

Wherein, γ>0 is a key hyperparameter of the RBF kernel function, known as the kernel width parameter, 
which controls the range of influence of a single training sample on the regression function, thereby determining 
the nonlinear modeling ability of the model:

The larger the γ value, the faster the decay of the kernel function, the smaller the influence range of the 
support vector, and the model will be more inclined to capture local data features, resulting in increased model 
complexity and possible overfitting.

The smaller the γ value, the slower the decay of the kernel function, the larger the influence range of the 
support vector, and the model will be more inclined to capture global data trends, reducing model complexity and 
possibly leading to underfitting.

In summary, the performance of the SVR model is highly dependent on the reasonable setting of its key 
hyperparameters C and γ. Traditional manual parameter adjustment or grid search methods are inefficient and 
difficult to guarantee the optimal solution, especially in multidimensional hyperparameter space. Therefore, it is 
necessary to introduce Bayesian optimization to search these hyperparameters efficiently and intelligently.

2.3. Bayesian optimization
Traditional support vector regression (SVR) models usually rely on grid search or manual adjustment to determine the 
hyperparameters , but in high-dimensional hyperparameter space, such methods are not only computationally 
expensive, but also prone to local optimality. In order to improve the efficiency of parameter search and model 
performance, this paper introduces the Bayesian Optimization (BO) strategy to perform global modeling and adaptive 
exploration of the hyperparameter space, so as to automatically find the optimal parameter combination.

Bayesian optimization guides the selection of the next round of evaluation points by constructing a 
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probabilistic proxy model of the objective function . The objective function  is usually defined as the 
model loss under cross-validation, such as the root mean square error (RMSE) or the mean absolute error (MAE). 
Its core process includes the following three steps [11]:

(1) Proxy model construction:
Bayesian optimization uses Gaussian process (GP) as the prior proxy model of the objective function, that is:

where μ(θ) represents the mean function and k(θ,θ') is the covariance function, which is used to characterize 
the similarity between different parameters.

(2) Acquisition function guides search:
In order to balance exploration and exploitation, this paper uses expected improvement (EI) as the acquisition

function:

where  represents the objective function value of the currently known best point. The EI function can guide 
the next step of evaluation at the most potential point.

(3) Iterative update and termination condition:
In each round of iteration, select the parameter combination θ that maximizes EI, evaluate it on the true

objective function, and update the GP model accordingly. Repeat the above process until the maximum number of 
iterations is reached or the convergence condition is met.

2.4. BO-SVR air quality correction framework
The BO-SVR air quality data correction model proposed in this paper has an overall process including feature 
construction, model initialization, objective function setting, and model training and prediction [12], as follows:

(1) Feature construction:
The input feature vector consists of the concentrations of “two particles and four gases” pollutants and five

types of typical meteorological variables, including:

Where T represents temperature, H represents relative humidity, P represents atmospheric pressure, WS 
represents wind speed, and R represents precipitation. This multimodal information jointly characterizes the impact 
of environmental changes on sensor output.

(2) Model initialization:
The initial hyperparameter search space of the support vector regression (SVR) model is set as follows:

Where C is the penalty factor, which controls the balance between fitting and generalization; γ is the 
parameter of the kernel function, which affects the model’s ability to respond to nonlinear features.

(3) Objective function setting:
The objective function of Bayesian optimization is defined as the average root mean square error (RMSE)

calculated based on K-fold cross-validation, and the expression is as follows:
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Wherein,  and  represent the true value and predicted value of the i-th sample in the k-th fold, 
respectively, and nk is the number of samples in the fold. This objective function serves as an evaluation indicator 
for Bayesian optimization and guides the search process for the optimal parameters.

(4) Model training and prediction:
Use Bayesian optimization to search for the optimal hyperparameter  in the predefined parameter 

space, and train the final SVR model based on it. After training, the model can be used to correct the raw pollutant 
data collected by miniature air quality detection devices, thereby improving its accuracy and consistency, making 
it closer to the actual measurement results of reference stations or high-precision instruments.

3. Experimental settings and result analysis
3.1. Experimental data and preprocessing
This study selected the synchronous monitoring data of the air quality automatic monitoring station of a certain 
municipal environmental protection bureau (hereinafter referred to as the “reference station”) and the micro air 
quality detection equipment deployed within 1 km of its periphery, with a time span from October 2024 to March 
2025. Both types of equipment recorded the concentration of “two particles and four gases” pollutants and five 
types of meteorological variables such as temperature, humidity, wind speed, air pressure, and precipitation, and 
the data sampling frequency was 1 hour.

In order to improve the model training effect and data consistency, the following preprocessing operations 
were performed on the original data before the experiment:

Time alignment and missing value interpolation (using linear interpolation);
Outliers (Z-score > 3) were eliminated;
All features were Z-score standardized.
The final experimental data set contains about 4,000 valid samples, divided into a training set and a test set in 

a ratio of 7:3.

3.2. Comparison method settings
To verify the correction performance of the proposed BO-SVR model, the following four typical models are 
selected for comparison experiments:

Raw: uncorrected raw micro-device data;
SVR (default parameters): traditional support vector regression model without parameter adjustment;
GS-SVR: SVR model with grid search parameter adjustment;
RF: correction method based on random forest regression;
BO-SVR (method in this paper): SVR model with Bayesian optimization parameter adjustment.
All the above models use the same feature input, and the training set is consistent with the test set to ensure 

fairness.

3.3. Evaluation indicators
In order to comprehensively measure the prediction accuracy of the model after correction, this paper selects the 
following three types of evaluation indicators:

Root mean square error (RMSE):
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Mean absolute error (MAE):

Coefficient of determination (R2):

Wherein, yi is the reference station data,  is the model prediction value,  is the reference data mean, and n 
is the total number of samples.

3.4. Experimental results and analysis
Table 1 lists in detail the performance indicators of the original data (Raw) and four different models (default 
SVR, grid search optimized SVR (GS-SVR), random forest (RF) and Bayesian optimized SVR (BO-SVR)) on the 
test set in the PM2.5 concentration correction task [13–15], including root mean square error (RMSE), mean absolute 
error (MAE) and determination coefficient (R2).

Table 1. Performance of the classic model in PM2.5 concentration correction task

Model RMSE (μg/m3) MAE (μg/m3) R2

Raw 9.72 4.63 0.61

SVR ( 默认 ) 4.88 3.12 0.74

GS-SVR 3.47 2.06 0.78

RF 2.92 1.61 0.81

BO-SVR 1.36 1.22 0.85

The results show that the original data (Raw) has the highest RMSE and MAE, the lowest R2, and a 
significant error. The default SVR, GS-SVR, and RF models are better than the original data in all indicators, 
which shows the effectiveness of machine learning correction.

The BO-SVR model showed the best performance, with an RMSE of only 1.36 μg/m3 and a MAE of 1.22 
μg/m3, both of which are the lowest among all models, indicating the smallest prediction error. At the same 
time, R2 is as high as 0.85, far exceeding other models, indicating that the degree of fit between its predicted 
value and the true value is the highest. This fully verifies that Bayesian optimization can significantly improve 
the correction accuracy and stability of SVR, enabling it to achieve excellent results in PM2.5 data correction.

Figure 1 shows the performance of the BO-SVR model in the PM2.5 concentration prediction task and 
the comparison trend with the actual monitoring values of the reference station. As can be seen from the figure, 
the predicted value (red dotted line) is highly consistent with the true value (blue solid line) in terms of overall 
trend, and can better capture the temporal variation characteristics of pollutant concentrations, especially in 
areas with large fluctuations (such as sample indexes 100 to 300, 600 to 800), it still maintains good fitting 
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accuracy without obvious lag or distortion.
In addition, the BO-SVR model has a relatively accurate fitting effect in multiple high-value peak segments, 

indicating that it has a strong modeling ability when processing nonlinear and highly volatile characteristic 
data, further verifying the effectiveness of Bayesian optimization in hyperparameter selection, and significantly 
improving the generalization ability of the model by automatically searching for the optimal C=1.4979 and 
γ=0.9997.
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Figure 1. Performance of BO-SVR model in PM2.5 concentration prediction task

Figure 2 shows a two-dimensional thermodynamic diagram of the BO-SVR model performance as the penalty factor 
C and kernel function parameter γ change. The diagram intuitively reveals the interactive effects of hyperparameters on 

model performance and the optimal region.
As can be seen from the figure, the model performance is poor when both the C value and the γ value are 

small (the dark blue area in the lower left corner), indicating that there may be underfitting. As the C value and the 
γ value gradually increase, the model performance is significantly improved, and the color gradually transitions 
from blue to bright yellow. Specifically, when the C value reaches about 30 or more and the γ value increases to 
about 4 to 6, the model performance reaches a peak (bright yellow area, performance index as high as 0.94 to 
0.96). This shows that the SVR model can best balance the model complexity and fitting ability in this area, and 
effectively capture the nonlinear characteristics in PM2.5 data.

This thermodynamic diagram intuitively verifies the excellent efficiency of Bayesian optimization in finding 
high-performance hyperparameter combinations. It can intelligently focus on promising parameter areas and avoid 
blind searches, thereby significantly improving the accuracy and optimization efficiency of the SVR model in 
PM2.5 correction. 

Figure 2. Analysis of BO-SVR model hyperparameter optimization results
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Figure 3 shows the distribution histogram of prediction residuals of different correction models in PM2.5 
data correction (Raw data, SVR, GS-SVR, RF, and BO-SVR). The more concentrated the prediction residuals 
are at zero and the narrower the distribution is, the higher the correction accuracy of the model is.

As can be seen from the figure, the residual distribution of the original data (Raw, orange) is the widest and 
the peak is low, indicating that its error is the largest and the volatility is strong. After correction by traditional 
SVR (blue) and grid search optimized GS-SVR (yellow), the residual distribution converges, the peak increases, 
and the error decreases. The random forest (RF, purple) model shows a narrower residual distribution and a higher 
peak, showing its better correction ability.

However, the residual distribution of BO-SVR (green) is the most concentrated, with the highest peak and 
significantly close to zero. This shows that the SVR model after Bayesian optimization has the smallest prediction 
error and the highest correction accuracy, effectively reducing the data deviation of the micro-monitor, and 
verifying the excellent performance of BO-SVR in PM2.5 data correction.

Figure 3. Comparison of prediction residual distribution of different models

Figure 4 shows the box plots of the prediction residuals of PM2.5 data for the original data (Raw) and four 
correction models (SVR, GS-SVR, RF, BO-SVR). The narrower the box, the closer the median is to zero, and 
the fewer outliers, indicating that the correction effect of the model is better and the error is smaller.

As can be seen from the figure, the box of the original data (Raw) is the widest, the median deviates from 
zero, and there are many outliers, indicating that its error range is wide and the deviation is large. The box width 
of the SVR and GS-SVR models has narrowed, and the median is closer to zero, showing the basic correction 
effect. The box of the random forest (RF) is further narrowed, but there are still some outliers. The box of the BO-
SVR model is the narrowest, its interquartile range is the smallest, the median is closest to zero, and the number 
of outliers is significantly reduced. The results show that the SVR model after Bayesian optimization shows the 
smallest prediction residual and the highest stability in PM2.5 data correction, which significantly improves the 
accuracy of the data.
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Figure 4. Comparison of error box plots of different models on PM2.5 data

Figure 5 shows the prediction results of the BO-SVR model on the test sets of five major air pollutants: 
PM10, CO, NO2, SO2, and O3. Each sub-figure compares the true value (blue solid line) with the predicted 
value of the BO-SVR model (red dotted line), and indicates the corresponding optimized C and γ parameters.

In general, the BO-SVR model shows good correction ability for data of different pollutants. Among the five 
types of pollutants, PM10, CO, NO2, SO2, and O3, the predicted curve (red dotted line) is highly consistent with 
the true curve (blue solid line), and the trend tracking ability is strong, indicating that the model can effectively 
capture the dynamic characteristics of pollutant concentrations over time. Especially at peaks or valleys with large 
concentration fluctuations, the BO-SVR model can still maintain good prediction accuracy and effectively correct 
the readings of the micro-monitor to a level close to the true value.

Although the concentration ranges and fluctuation characteristics of different pollutants are different, 
Bayesian optimization can find the optimal hyperparameter combination for the SVR model to adapt to the 
respective data characteristics (such as PM10 (C=1.2438, γ=0.9971) and O3 (C=2.7366, gamma=0.9983)), which 
further confirms the strong advantages of Bayesian optimization in improving the generalization ability and 
adaptability of the model, enabling it to optimize the SVR model in a targeted manner, thereby showing stable 
high performance in the multi-pollutant monitoring data correction task.
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Figure 5. BO-SVR model correction results for different air pollutants

In summary, the above experimental results consistently show that introducing Bayesian optimization into 
the support vector regression model can significantly improve the correction accuracy, stability, and model 
generalization ability of micro air quality monitoring data. BO-SVR not only comprehensively surpasses the 
existing mainstream correction methods in key performance indicators, but also provides a solid technical 
guarantee for the accurate application of micro sensor data through an efficient hyperparameter search mechanism.

4. Conclusion and prospects
This study proposes and verifies a Bayesian optimization-based support vector regression (BO-SVR) data 
correction method to address the accuracy and stability issues of micro air quality monitoring data. By deeply 
analyzing the hyperparameter optimization process of the BO-SVR model in the PM2.5 thermodynamic diagram, 
we confirm that Bayesian optimization can efficiently and intelligently search for the optimal SVR hyperparameter 
combination, significantly improving the model performance.

The experimental results show that compared with traditional methods such as raw data, default SVR, grid 
search SVR, and random forest, the BO-SVR model has excellent advantages in key evaluation indicators such as 
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RMSE, MAE, and R2. Its prediction residual distribution is the most concentrated and close to zero, and the error 
box plot shows the smallest error range and the least outliers, which fully demonstrates the powerful ability of BO-
SVR in improving data accuracy. In addition, BO-SVR shows good universality and robustness in the correction 
of multiple types of pollutants such as PM10, CO, NO2, SO2, and O3, and can effectively cope with the complex 
correction needs of different pollutants.

In summary, this study provides an efficient and high-precision solution for the correction of micro air quality 
sensor data, which strongly supports the construction of a high-density, real-time air quality monitoring network. 
Future work can further explore the fusion correction of multi-source heterogeneous data, online incremental 
learning methods, and lightweight strategies for deploying models to edge devices to adapt to more complex 
practical application scenarios.
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