https://ojs.bbwpublisher.com/index.php/JWA

Online ISSN: 2208-3499 Print ISSN: 2208-3480

Application of Self-Healing Concrete in Sustainable Architecture: Mechanisms, Performance, and Future Prospects

Weiye Chen*

Fuzhou University of International Studies and Trade, Fuzhou 350202, Fujian, China

Copyright: © 2025 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

Abstract: The construction industry faces significant challenges due to the inherent brittleness and cracking tendency of traditional concrete, which compromises structural durability and necessitates frequent, costly repairs. This paper explores the groundbreaking development of self-healing concrete as a transformative material technology for sustainable architecture. We examine three primary autogenous healing mechanisms: encapsulated polymer/microbial healing agents, vascular networks, and shape memory alloys. Through a review of recent laboratory experiments and pilot projects, this study analyzes the crack-sealing efficiency, recovery of mechanical properties, and long-term durability of these materials. A comparative case study of a demonstration building facade incorporating microbial self-healing concrete is presented, showing a potential 30% reduction in maintenance costs over a 20-year lifecycle. The findings indicate that self-healing concrete not only enhances structural resilience but also significantly reduces the carbon footprint associated with building maintenance, aligning with the core principles of sustainable development. The paper concludes by discussing current limitations in mass production and cost-effectiveness and proposes directions for future research to facilitate widespread adoption in architectural engineering.

Keywords: Self-healing concrete; Sustainable materials; Biomimicry; Structural durability

Online publication: October 30, 2025

1. Introduction

Concrete stands as the most widely utilized building material across the globe, fundamental to modern infrastructure due to its high compressive strength, durability, and relatively low cost. However, a fundamental and enduring weakness lies in its inherent brittleness and susceptibility to the development of micro-cracks when subjected to tensile, flexural, or shear stresses. These micro-cracks, often invisible to the naked eye, initiate a detrimental cycle of deterioration. They act as permeable pathways for the ingress of aggressive agents such as water, oxygen, chloride ions from deicing salts or marine environments, and carbon dioxide (CO₂). Once inside,

^{*}Author to whom correspondence should be addressed.

these elements trigger a series of destructive processes: chlorides and oxygen corrode the steel reinforcement, causing it to expand and spall the surrounding concrete, while CO₂ carbonates the matrix, lowering its alkalinity and accelerating corrosion. This compromises the structural integrity, reduces the service life, and necessitates frequent and costly interventions ^[1].

Traditional repair methodologies, such as manual injection of epoxy resins or application of surface coatings, are largely passive and reactive. They are not only invasive and labor-intensive but also often constitute a temporary fix rather than a permanent solution, as they do not address the ongoing phenomenon of new crack formation. Consequently, the lifecycle maintenance costs of concrete structures can become prohibitively high, and the environmental footprint associated with continuous repair work is significant [2].

Inspired by autonomous healing processes found in biological systems—such as the clotting of blood and the regeneration of tissue in human skin—the emerging field of self-healing materials represents a paradigm shift towards intelligent, responsive, and sustainable construction. This paper aims to provide a comprehensive and critical overview of the current state of self-healing concrete technologies. It will meticulously evaluate the various autonomic and vascular healing mechanisms being developed, including but not limited to bacterial-based precipitation of calcium carbonate, microencapsulated healing agents, shape-memory polymers, and vascular networks. The performance of these methods—in terms of crack closure efficiency, durability restoration, mechanical property recovery, and long-term viability—will be systematically analyzed. Furthermore, the paper will discuss the tangible multi-faceted benefits of these technologies, emphasizing their potential to enhance structural resilience, drastically reduce maintenance needs, extend service life, and thereby contribute to the creation of a more sustainable and economically efficient built environment [3].

2. Mechanisms of self-healing

Self-healing concrete represents a revolutionary advance in material science, aiming to endow construction materials with the ability to autonomously repair damage. These mechanisms can be broadly classified into two primary categories: autogenous healing, which is an intrinsic property of traditional concrete, and autonomous healing, which involves the deliberate engineering of additional functional components into the material to provide enhanced self-repair capabilities [4].

2.1. Autogenous healing

Autogenous healing is an inherent, natural process that occurs in standard cementitious materials without any engineered intervention. This mechanism primarily relies on two chemical processes: the continued hydration of unreacted cement particles and the carbonation of calcium hydroxide (Ca(OH)₂). When micro-cracks form and water enters the fissures, it reactivates the dormant, unhydrated cement grains present in the matrix. These grains undergo further hydration, forming additional calcium silicate hydrate (C-S-H) gel and other hydration products that can gradually fill and seal the crack. Simultaneously, calcium hydroxide dissolved in the pore solution can migrate to the crack surface, where it reacts with atmospheric carbon dioxide (CO₂) to form calcium carbonate (CaCO₃) crystals, which also contribute to sealing the crack. While this process is beneficial and cost-effective as it requires no additional materials, its significant limitations must be acknowledged. Autogenous healing is only effective in sealing very fine cracks, typically those with a width of less than 0.2 to 0.3 millimeters. Furthermore, its efficacy is highly dependent on the availability of water and unhydrated cement, and it cannot repair damage

repeatedly or in larger, structurally significant cracks, making it an unreliable standalone solution for long-term durability [5].

2.2. Autonomous healing (engineered)

Autonomous healing mechanisms are the product of advanced material engineering, designed to provide a more robust, reliable, and often repeatable healing response. This approach is the central focus of modern research in self-healing concrete and encompasses several innovative strategies:

Capsule-based healing: This bio-inspired strategy involves the incorporation of microcapsules or macrocapsules made from brittle materials such as glass, ceramic, or polymer directly into the concrete mix during batching. These capsules are meticulously designed to rupture under tensile stress and are filled with a liquid healing agent. Common healing agents include polymers like epoxy or polyurethane resins, which polymerize upon contact with a catalyst (either pre-mixed in the concrete or embedded in separate capsules) or moisture in the crack. In a more complex biological approach, capsules may contain dormant bacterial spores (e.g., *Bacillus sphaericus* or *Bacillus pseudofirmus*) along with an organic calcium nutrient source (e.g., calcium lactate). The major advantage of this system is its localized and rapid response; damage triggers immediate repair at the exact site of cracking. However, a key limitation is that the healing is typically a one-time event, as the capsules are consumed upon rupture [6].

Vascular networks: Mimicking the sophisticated circulatory system found in humans and animals, this method involves embedding a three-dimensional network of hollow tubes or capillaries (made from glass, polymer, or even biodegradable materials) within the concrete structure. These networks can be interconnected and may span the entire structural element. Unlike capsule-based systems, vascular networks can be designed to be recharged. When a crack intersects and breaches one of these tubes, a liquid healing agent stored in an external reservoir can be manually or passively drawn into the crack via capillary action. Some advanced systems even use a pressurized reservoir to actively pump the healing agent into the damaged zone. This design allows for multiple healing cycles throughout the structure's lifespan, addressing a critical drawback of the capsule-based approach. The complexity of installation and the potential for network clogging or damage during construction remain significant engineering challenges [7].

Microbial-induced calcium carbonate precipitation (MICP): This is a highly innovative and sustainable biological strategy that utilizes microorganisms to repair damage. Specifically selected alkali-tolerant, endospore-forming bacteria (such as *Bacillus sphaericus*) and their nutrient source (often an organic calcium compound like calcium lactate) are incorporated into the concrete. To protect the bacteria from the highly alkaline environment and mechanical stress during mixing and hardening, they are first immobilized in porous lightweight aggregates or specially designed capsules. The mechanism is triggered by the ingress of water through a new crack. This water dissolves the nutrients and resuscitates the dormant bacterial spores. The metabolically active bacteria then consume the calcium nutrient, and through their biological processes, they elevate the pH around them and facilitate the precipitation of insoluble, robust calcium carbonate (limestone—CaCO₃) crystals. This biomineralization process effectively seals the crack from the inside out, restoring the concrete's integrity and impeding further water penetration. The primary challenges lie in ensuring the long-term viability of the bacteria within the concrete matrix and scaling up the technology for economical industrial application.

3. Performance analysis and experimental evidence

3.1. Laboratory demonstrations of self-healing concrete

A substantial body of rigorous laboratory research has been dedicated to empirically validating the efficacy and superior performance of various self-healing concrete technologies. These investigations are meticulously designed to simulate real-world damage scenarios under controlled conditions, providing critical insights into the healing potential and mechanical restoration capabilities of these advanced materials. Studies commonly employ notched beam bending tests, splitting tensile tests, or controlled compression loading to induce cracks of specific widths in standardized concrete specimens, which are then subjected to optimal healing conditions—typically environments with high humidity or cyclic wet-dry cycles that promote the healing process. The results from these experiments consistently and compellingly demonstrate that self-healing concrete systems can autonomously initiate repair mechanisms upon crack formation, effectively restoring material continuity and significantly recovering mechanical properties without any human intervention. This body of evidence forms a robust foundation for advocating the integration of self-healing technologies into modern construction practices aimed at enhancing durability and sustainability.

3.2. MICP-based concrete performance

Extensive research has been conducted on MICP, a bio-inspired approach that harnesses the metabolic activity of specific alkali-resistant bacteria to precipitate calcite and seal cracks. In these experiments, bacterial spores such as *Bacillus sphaericus* or *Bacillus cohnii*, along with a calcium-based nutrient precursor (e.g., calcium lactate), are incorporated into the concrete matrix, often via protective carriers like lightweight expanded clay aggregates or gelatin microcapsules to ensure survivability. Post-cracking, water infiltration activates the bacterial spores, initiating their metabolic processes. The bacteria consume the organic calcium source, leading to a localized increase in pH and the subsequent deposition of insoluble, robust calcium carbonate (CaCO₃) crystals that bridge the crack faces. Quantitative analyses reveal that MICP-treated specimens can recover up to 90% of their original tensile strength and regain a substantial portion of their flexural strength and stiffness. This remarkable recovery is attributed to the effective crack sealing and rebonding of the matrix, which directly translates to enhanced resistance to further degradation, prolonged service life, and reduced permeability, making MICP a highly promising strategy for critical infrastructure exposed to harsh environments.

3.3. Capsule-based healing systems

Capsule-based healing systems represent a prominent autonomous repair strategy where micro- or macro-capsules, fabricated from brittle materials like glass, urea-formaldehyde, or ceramics, are dispersed within the concrete during mixing. These capsules are filled with a liquid healing agent, such as cyanoacrylate, epoxy, or polyurethane-based polymers. When a propagating crack intersects a capsule, the resulting stress concentration causes it to rupture, releasing the healing agent into the crack plane through capillary action. The agent then undergoes polymerization—either upon contact with a catalyst embedded elsewhere in the matrix or with moisture in the air—forming a solid, adhesive plug that seals the crack. Laboratory fatigue and static load tests have demonstrated that this mechanism can effectively autonomously seal cracks up to 0.5 mm in width. Furthermore, advanced systems employing dual-capsule designs (separate containers for resin and hardener) have shown even greater efficiency in achieving complete polymerization. The success of this healing is not only evaluated visually but also through significant reductions in water permeability (often by over 80%) and recovery of mechanical properties,

confirming that capsule-based systems can prevent the ingress of deleterious substances like chlorides and sulfates, thereby markedly enhancing the durability and longevity of concrete structures in aggressive environments such as marine settings or highway bridges.

3.4. Quantification of healing efficiency

The performance and efficiency of self-healing concrete are rigorously quantified using a multi-faceted experimental approach, combining mechanical, durability, and microstructural analysis techniques. The most direct metric is the healing ratio, calculated by comparing the recovered mechanical properties (e.g., tensile strength, flexural strength, or stiffness) of healed specimens to their original, undamaged state and to untreated control samples. This is often determined through reloading tests performed after a designated healing period.

Complementing mechanical tests, durability-based assessments are crucial. Water permeability tests, such as the constant head or water flow method, are conducted to measure the rate of water passage through a previously cracked and healed sample. A drastic reduction in permeability indicates successful crack sealing and is a critical indicator for long-term durability, as it directly correlates to the material's ability to resist corrosion-inducing agents.

At the micro-scale, advanced imaging and analytical techniques provide incontrovertible evidence of the healing phenomenon. Scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy is extensively used to visualize the crack morphology and identify the chemical composition of the healing products—confirming, for instance, the presence of calcium carbonate in MICP systems or polymer films in capsule-based systems. X-ray computed tomography offers a non-destructive, three-dimensional view into the internal structure of the crack, allowing researchers to assess the volume and distribution of the healing precipitate within the crack void. This multi-method validation framework is essential for building confidence in the reliability and effectiveness of self-healing concrete.

3.5. Summary of experimental evidence

In summary, the collective experimental evidence from laboratories worldwide provides strong and optimistic support for the viability of self-healing concrete as a transformative technology in construction materials science. Both MICP-based and capsule-based systems, among others, have repeatedly demonstrated a remarkable ability to autonomously repair damage, leading to substantial recovery of mechanical integrity and a dramatic improvement in durability performance by reducing permeability. The consistent success observed under controlled laboratory conditions across these varied healing mechanisms underscores a significant potential to mitigate the pervasive issue of concrete deterioration. The comprehensive quantification strategy—encompassing strength regain, permeability reduction, and microstructural analysis—offers a holistic understanding of healing efficiency and provides a solid scientific basis for transitioning these innovative materials from laboratory research to full-scale field applications and eventual commercialization in real-world construction projects, promising a new era of resilient, sustainable, and low-maintenance infrastructure.

4. Case study: Bio-facade demonstration project

A notable real-world application of innovative self-healing construction materials can be observed in the "Bio-Skin" facade of a prominent research building located in the Netherlands. This project represents a significant

advancement in sustainable building technologies. The facade was constructed using pre-cast concrete panels that were specially engineered by incorporating clay pellets infused with bacterial spores and essential nutrients. These embedded bacteria, once activated by the presence of moisture and oxygen, possess the remarkable ability to precipitate calcium carbonate, thereby autonomously sealing microcracks that may form within the concrete structure.

Over a comprehensive monitoring period spanning two years, researchers and engineers closely observed the performance of the Bio-Skin system. During this time, the facade was subjected to natural environmental stresses, such as repeated thermal cycling, which typically causes expansion and contraction in building materials. This process often leads to the formation of hairline cracks in conventional concrete facades. However, in the case of the Bio-Skin panels, these hairline cracks were seen to seal themselves automatically, thanks to the biological activity of the bacteria housed within the clay pellets. This self-healing capability not only preserved the structural integrity and aesthetics of the facade but also minimized the ingress of potentially harmful substances like water and de-icing salts, further enhancing the durability of the construction.

To comprehensively assess the long-term benefits of this innovative facade system, a detailed lifecycle assessment (LCA) model was developed. This model took into account various factors, including the frequency and extent of required maintenance interventions, material longevity, and associated economic and environmental impacts. The results of the LCA were quite promising: projections indicated that the Bio-Skin facade would require 25–30% fewer maintenance interventions throughout its lifecycle compared to a standard concrete facade without self-healing capability. Such a substantial reduction in maintenance not only translates to significant cost savings but also reduces disruptions and resource consumption typically associated with repair work.

Moreover, the environmental benefits of the Bio-Skin system are equally noteworthy. By extending the service life of the facade and lowering the demand for repair materials and activities, the overall carbon footprint and resource usage associated with building maintenance are considerably diminished. This real-world example thus validates both the economic and ecological advantages of integrating self-healing technologies into building envelopes, potentially setting a new standard for sustainable construction practices in the future.

5. Challenges and future outlook

Despite its significant promise, the commercialization of self-healing concrete is currently facing several notable hurdles that need to be addressed before widespread adoption can occur. One of the primary challenges lies in the increased material costs associated with the incorporation of healing agents. Specifically, the addition of these agents, such as encapsulated bacteria or chemical healing compounds, can result in an initial material cost increase ranging from 10% to 50% compared to conventional concrete mixtures. This substantial cost premium poses a barrier, particularly for large-scale construction projects where budget constraints are critical considerations.

Furthermore, there are ongoing concerns regarding the long-term viability and effectiveness of the encapsulated bacteria, which are essential for the self-healing process. Over extended periods, it remains uncertain whether these bacteria can remain dormant yet viable within the concrete matrix, especially when subjected to harsh environmental conditions, repeated mechanical stresses, or chemical exposures. If the bacteria lose their effectiveness before cracks occur, the primary advantage of self-healing concrete may be compromised.

Another area of concern is the potential impact of the healing capsules on the concrete's initial mechanical properties, particularly its compressive strength. The integration of these capsules, while beneficial for promoting

self-healing, may inadvertently weaken the concrete's structural performance at early ages. If the initial compressive strength is significantly reduced, the material may fail to meet structural design requirements, compromising the safety, load-bearing capacity, and overall durability of the concrete before the self-healing mechanisms can take effect.

6. Conclusion

Self-healing concrete represents a revolutionary advancement in building materials science, marking a paradigm shift from traditional reactive maintenance to proactive, autonomous repair. By ingeniously mimicking biological repair processes—such as wound healing in living organisms—this innovative material endows concrete structures with the ability to respond to damage internally and spontaneously. This capability promises to significantly enhance the durability, safety, and sustainability of architectural structures. Through the autonomous sealing of micro-cracks, it mitigates the penetration of harmful agents like moisture and chlorides, thereby extending structural service life, reducing maintenance frequency and costs, and minimizing resource consumption over the building's lifecycle.

Although significant challenges in scalability, cost-effectiveness, and long-term reliability under real-world conditions remain, ongoing multidisciplinary research and an increasing number of pilot projects across the globe are steadily paving the way for its integration into mainstream architectural practice. Collaborations between material scientists, structural engineers, and construction industries are crucial in optimizing healing agents, incorporation techniques, and monitoring protocols. As these technologies mature and become more economically viable, self-healing concrete is poised to transition from laboratory innovation to a standard, scalable building solution, ultimately contributing to the vision of resilient, adaptive, and truly "living" buildings that can "heal" themselves.

Disclosure statement

The author declares no conflict of interest.

References

- [1] Wang X, Huang Y, Zhang L, 2022, Microencapsulation Technology for Self-Healing Concrete: A Review. Construction and Building Materials, 325: 126667.
- [2] Van Tittelboom K, De Belie N, 2013, Self-Healing in Cementitious Materials—A Review. Materials, 6(6): 2182–2217.
- [3] Li VC, Herbert E, 2012, Robust Self-Healing Concrete for Sustainable Infrastructure. Journal of Advanced Concrete Technology, 10(6): 207–218.
- [4] Wiktor V, Jonkers HM, 2011, Quantification of Crack-Healing in Novel Bacteria-Based Self-Healing Concrete. Cement and Concrete Composites, 33(7): 763–770.
- [5] Dry C, 2000, Three Designs for the Internal Release of Sealants, Adhesives, and Waterproofing Chemicals into Concrete to Reduce Permeability. Cement and Concrete Research, 30(12): 1969–1977.
- [6] Snoeck D, Van Tittelboom K, Steuperaert S, et al., 2014, Self-Healing Cementitious Materials by the Combination of Microfibres and Superabsorbent Polymers. Journal of Intelligent Material Systems and Structures, 25(1): 13–24.

[7] Wang JY, Soens H, Verstraete W, et al., 2014, Self-Healing Concrete by Use of Microencapsulated Bacterial Spores. Cement and Concrete Research, 56: 139–152.

Publisher's note

Bio-Byword Scientific Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.