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Abstract: Infectious diseases pose a significant threat to human life, health, and safety. Therefore, it is crucial to develop 
effective control strategies. This paper aims to address this concern through the construction of an SEIQRS model on 
complex networks. This model focuses on viruses that have an incubation period and are infectious during this period. 
In order to minimize the costs, optimal control theory is used to solve the time-varying control problem of vaccination, 
quarantine, and treatment. Subsequently, numerical simulations are performed to analyze the pros and cons of different 
control combinations, as well as the impact of parameters on the effectiveness of control. By doing so, better control 
strategies can be developed, and the relationship between parameters, contagion, and control can be revealed.
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1. Introduction
The world is currently facing a serious situation with regard to the spread of infectious diseases. There is 
therefore an urgent need to study the patterns and conditions of transmission of these diseases. On the one hand, 
there is the re-emergence of infectious diseases that used to be widespread in the past. On the other hand, new 
infectious diseases such as COVID-19 are emerging from time to time, threatening the physical and mental 
health of the people and the public safety of society. Taking steps to block the spread of the virus is crucial in 
protecting people’s lives and health, as well as maintaining social stability.

Classical infectious disease dynamics revealed the transmission threshold law through the SIR/SIS 
hamartomatous model, but assumed a limitation of uniform population contact [1–3]. Complex network theory 
breaks through this limitation by abstracting individual exposure to network structure, and Pastor-Satorras 
showed that the transmission threshold in scale-free networks tends to zero as the network size grows, which 
explains the mechanism of the sustained global spread of modern infectious diseases [4]. Current research 
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focuses on: the effect of network topological features (degree distribution, clustering coefficients) on spread, the 
spreading patterns of dynamic and weighted networks, and the modeling of factors such as media awareness and 
protective behavior [3, 5–7]. Control strategies have evolved from constant value control to optimal control, and 
balancing the cost and effectiveness of prevention and control by means of vaccination and isolation treatment 
has formed an important research direction [8–9]. This field provides theoretical support for the development of 
precise prevention and control strategies by constructing a networked propagation model.

An attempt is made in this paper to analyze the advantages and disadvantages of different control 
combinations to provide some theoretical basis for the development of control strategies. The purpose of 
this investigation is to examine the effect of different control combinations and the effect of different model 
parameters on the control effectiveness.

2. Dynamic optimal control of an SEIQRS epidemic model on a complex network
2.1. SEIQRS epidemic model
The SEIR model divides the total population into four compartments: Susceptible (S) (uninfected individuals 
at risk of infection), Exposed (E) (infected individuals in the latent period with some infectiousness but no 
symptoms), Infected (I) (symptomatic individuals with higher infectiousness), and Recovered (R) (immune 
individuals no longer participating in viral transmission). By integrating the mean-field theory of complex 
networks, and assuming a constant total population, a latent period with infectiousness, and bilinear incidence 
rates, the SEIRS model on complex networks can be formulated as follows:
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In Equation 1, β is the effective transmission rate, θ is the coefficient of the effective transmission rate of 
the incubator, δ is the rate of immune failure, k is the degree of the node, η is the outbreak rate, and μ is the 
natural recovery rate.

 and  represent the average contact rates, which denote the 
probability that any node is connected to an infected individual (I) or an exposed individual (E). The average 
degree of the node is denoted by <k>=∑kkPk, and P k(k=1,2 , . . . ,n ) represents the degree distribution of the 
node.

Additionally, three controls, namely vaccination α(t)S k(t ), quarantine q(t )I k(t ), and treatment σ(t )I k(t ), are 
introduced to the SEIRS model on complex networks to obtain the SEIQRS model with controls on complex 
networks (Equation 2). Here, the parameters α, q, and σ represent the proportion of the population receiving 
vaccination, quarantine, and treatment, respectively.
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where α is the effective vaccination rate, q is the isolation rate, and σ is the treatment recovery rate. Q(t) 
represents the proportion of the population under quarantine as a function of time. Q is based on the assumption 
that the isolatee de-isolates and resumes the original social relationship (the original connecting edge) 
immediately after recovery. The initial conditions of model (2) are:

			   (3)

2.2. Optimal controls
In this section, the optimal control theory will be used to discuss the optimal control problem for each control 
combination and compare them.

The control variables u(t) and the Lagrangian function L(𝑥(t), u(t)) for different control combinations are 
shown in Table 1, where α(t), q(t), and σ(t) are defined as α(t)=(α1(t),α2(t), ..., αn(t)), q(t)=(q1(t), q2(t), ..., qn(t)), 
σ(t)=(σ1(t), σ2(t), ..., σn(t)). Define the control set U={u(t),0 ≤αk(t),qk(t),σk(t)≤ 1,t ∈ [0,T]} with T > 0 as the 
target moment and construct the objective function . The meaning of the objective function 
is the cost of the control measures, including the cost of implementing the control and the cost of the reduced 
social benefits resulting from contracting the disease, where the cost of the reduced social benefits resulting 
from contracting the disease is characterized by the number of infected persons. It is assumed that both types 
of costs are equally important and have the same weighting factor. The optimal control problem for model (2) 
under the seventh control combination is as follows:

Solving the optimal control problem involves finding an optimal control u* such that J ( u ) = 
min u ( t ) ∈ uJ (u ) . For equation 2, there are seven combinations of vaccination, quarantine, and treatment. The 
optimal control problems under the other six control combinations can be considered as special cases when 
some of the control parameters of combination 7 are constants of zero.
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Table 1. Control variables and Lagrangian functions ∈
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To solve the optimal control problem (Equation 2) for the combination 7 as an example, the Hamiltonian 
function (Equation 4) needs to be defined first.
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The adjoint variables, denoted as λ1k(t), λ2k(t), λ3k(t), λ4k(t), λ5k(t), are relevant for this function. According 
to Pontryagin’s principle of great value, the optimal solution, denoted as O* can be obtained. In this case, 
O*={S*1(t), E*1(t), I*1(t), Q*1(t), R*1(t),..., Q*n(t), R*n(t),} is the solution of Equation 2 in the state of optimal 
control u*(t). Additionally, the optimal solution of the control variables can be determined by Equation 6, 
provided that the conditions , , and the boundary conditions 

(Equation 5) are satisfied. The proof of this conclusion is presented below.

1 2 3 4 5( ) ( ) ( ) ( ) ( ) 0, 1, 2,...,k k k k kT T T T T k n= = = = = =λ λ λ λ λ 				    (5)

*
* 1 5

*
* 3 4

*
* 3 5

( )( ( ) ( ))min{max{0, },1}

( )( ( ) ( ))min{max{0, },1}

( )( ( ) ( ))min{max{0, },1}

k k k
k

k

k k k
k

k

k k k
k

k

S t t t
A

I t t tq
B

I t t t
C

λ λα

λ λ

λ λσ

−
=

−
=

−
=

						      (6)

PROOF: Following Pontryagin’s principle of extreme value, the Hamiltonian function (Equation 4) is 
defined. The adjoint variables can be calculated by the system of differential equations (Equation 7).
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The system of differential equations (Equation 7), which is satisfied by the adjoint variables, can be 
derived using the boundary conditions (Equation 5) and the control equations (Equation 8). Finally, the optimal 
solutions of the control can be obtained as Equation 10, Equation 11, and Equation 12, respectively.
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3. Numerical simulation
According to the complex network theory, the structure of a social network aligns with that of a scale-free 
network. The model is assumed to be based on a BA scale-free network with the nodes’ degree distribution 
following a power law, constructed using an evolutionary generation approach. The degree distribution of the 
network is Pk=ck–γ, where c=11.6, γ=2.64, Pk=1, n=188, <k>=6.9.

This section analyzes the advantages and disadvantages of different control combinations for fixed 
parameters. Set some parameters in the model to β=0.5, δ=0.01, μ=0.01, ε=0.35, η=0.07, θ=0.5. The initial 
conditions are Sk(0)=0.9, Ek(0)=0, Ik(0)=0.1, Qk(0)=0, Rk(0)=0, with the initial 

number of infections being 10% of the total number of randomly selected individuals. Since randomly selecting 
initial infected individuals could lead to varying simulation results each time, the average of 100 simulation 
outcomes is taken as the final result. Set the cost weight coefficients in the objective function to Ak=0.05, 
Bk=0.8, Ck=0.5, and the objective time is set to T=10. The control intensity of the small compartment of each 
degree is averaged as the control intensity of the large compartment, like α(t)= αk(t)/n, q(t)= qk(t)/n, 

σ(t)= σk(t)/n.

The numerical simulation results are shown in Figure 2, where combination 0 is the case without controls. 
The infected number demonstrates the effects of control measures. As shown in Figure 2(a), vaccination alone 
can only keep the number of infected individuals at its initial level, while also maintaining a gradual decrease 
in the infection count over time. The effectiveness difference between quarantine and treatment, whether used 
alone or in combination, is not significant. In combinations with vaccination, the infected number consistently 
decreased, while in combinations without vaccination, it rebounded after a period of reduction. Mechanistically, 
vaccination takes longer to work and is expected to completely eliminate infectious diseases. Quarantine 
and treatment reduce the infected people for a short period of time, but only work on infected people and are 
difficult to completely eliminate infectious diseases.

　

		  (a) Effects of different control combinations	  (b) Cost of different control combinations

Figure 2. Effects and cost of different control combinations. 

As shown in Figure 2(b), vaccination alone is cheaper but less effective. The cost of combinations 
with vaccination is less than the cost of combinations without vaccination. The cost of combined control 
combinations is less than the cost of quarantine or treatment only, where the cost of treatment is less than the 
cost of quarantine.
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The optimal control is shown in Figure 3. Vaccination is significantly higher than quarantine and treatment. 
Vaccination is reduced sharply at the beginning and then gradually reduced. Quarantine and treatment fluctuate 
in the absence of vaccination, but level off and decrease in the presence of vaccination. The combination of 
three controls is stronger than the combination of two controls, which is stronger than a single control.

(a) Combination 1

(d) Combination 4

(f) Combination 6

(e) Combination 5

(g) Combination 7

(b) Combination 2 (c) Combination 3

Figure 3. The infected number and the solution for optimal control
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4. Conclusion
This paper analyzes the optimal control problem for SEIQRS models on complex networks. The three optimal 
controls of vaccination, quarantine, and treatment were solved. The effects of parameters on the effectiveness of 
control were studied. Theoretical results were corroborated with numerical simulations. The effects and costs of 
different combinations of controls were compared. From these analyses, the following conclusions were drawn.

Quarantine and treatment are more effective than vaccination for short periods of time. The effectiveness 
of quarantine and treatment, whether used alone or in combination, does not significantly differ. On the other 
hand, vaccination is effective in limiting the spread of infectious diseases and eliminating them altogether. 
However, vaccination alone is not effective in reducing the number of infected individuals for a short period of 
time.

The cost of control combinations is generally lower than the cost of implementing a single control. 
Combinations that involve vaccination have lower costs compared to those without vaccination. Moreover, the 
overall cost of quarantine and treatment is higher than the cost of vaccination.

Short-term vaccination is preferable over quarantine and treatment. Combinations involving vaccination 
exhibit smoother changes compared to combinations without vaccination.
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